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Abstract: The study of wavelet and more general reproducing function
systems revolves around the properties of shift invariant spaces. While a
great deal is known about such spaces, there are also many open questions.
In particular, every classification theorem for wavelet systems is also a clas-
sification theorem for a certain type of shift invariant space–to date, few
such classification theorems are known. Both for theoretical and computa-
tional efforts, it is convenient to regard shift invariant spaces as analogs of
inner product spaces with periodic functions as “scalars” and with a certain
function-valued form replacing the inner product. We will discuss a variety
of results on shift invariant spaces and indicate some of the open research
questions.

1 DEFINITIONS AND MOTIVATION

1.1 Shift Invariant Space Definitions

For n ∈ N and k ∈ Zn, Tkψ(x) = ψ(x − k) defines the translation (or shift)
operator Tk on L2(Rn).

V is a shift invariant space (SIS) if V is a closed subspace of L2(Rn) and
Tk(V ) ⊂ V for every k ∈ Zn. The shift invariant space < ϕ1, ϕ2, . . . , ϕN >
generated by ϕ1, ϕ2, . . . , ϕN is the smallest SIS containing each ϕi and is
thus the closure in L2(Rn) of the span of {Tkϕi | 1 ≤ i ≤ N, k ∈ Z}.

∗This article contains material to be presented during the author’s lecture at the work-
shop “Wavelets and Applications”, Barcelona, July 1-6, 2002.
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1.2 TFW Definition

For A ∈ GL(n,R), the dilation operator DA is the unitary operator on
L2(Rn) defined by DAf(x) =| detA |1/2 f(Ax). Then, for L ∈ N,

Ψ = {ψ(l)
j,k = Dj

ATkψ
(l) | 1 ≤ l ≤ L, j ∈ Z, k ∈ Zn}

is a tight frame wavelet system (TFW) with L generators and dilation
matrix A if

|| f ||2=
L∑

l=1

∑
j∈Z

∑
k∈Zn

|< f, ψ
(l)
j,k >|2

for all f ∈ L2(Rn). We can then describe each f weakly in the form

f =
∑
j,k,l

< f, ψ
(l)
j,k > ψ

(l)
j,k.

A dyadic TFW involves dilation by powers of two, i.e. A = 2In.

1.3 Remarks

In the context of Definition 1.2, the building block for the TFW system
is the shift invariant space V =< ψ(1), ψ(2), . . . , ψ(n) >. We then have
L2(Rn) spanned by the images of V under the integer powers of DA. As a
starting point for construction/classification of TFWs, we need to know how
to construct/classify all shift invariant spaces with this spanning property.

Gabor systems and hybrid reproducing function systems unifying TFW
and Gabor systems also involve a finitely generated SIS V as a building
block but replace the family of integer powers of a fixed dilation operator
with a countable family of operators each of which is a product of a dilation
operator and a modulation operator.

The theory of shift invariant spaces goes back to the work of Helson
roughly 40 years ago. Contributions to the theory have been made by virtu-
ally every researcher working on wavelet and Gabor systems. Many of the
properties described in Section 2 were obtained with very different methods
by Ron and Shen. The papers of de Boor, De Vore, Ron;Lawrence Baggett;
Marcin Bownik; and Ziemowit Rzeszotnik should also be mentioned. The
very algebraic approach described in Section 2 differs from the methods used
by these authors.
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2 BASIC PROPERTIES OF SHIFT INVARIANT
SYSTEMS

2.1 Definitions

We will take
f̂(ξ) =

∫
Rn

f(x)e−2πiξ·xdx

as the definition of the Fourier transform operator Ff = f̂ with ǧ =F−1g.
Functions on Tn = Rn/Zn are identified with Zn-periodic functions on Rn

and subsets of Tn are identified with subsets of Rn invariant under Zn

translations. Haar measure on Tn may be regarded as the restriction to the
unit cube of Lebesgue measure dξ on Rn.

1. The frequency orbit support Ωf of f ∈ L2(Rn) is the set of all ξ ∈ Rn

for which there exists k ∈ Zn such that f̂(ξ + k) 
= 0. Up to a set of
measure 0, Ωf is a well defined subset of Tn.

2. For m ∈ L∞(Rn), the module action of m on f is defined by m · f = g
where ĝ = mf̂ is the pointwise product of m and f̂ .

3. For f, g ∈ L2(Rn), we define the bracket product by

[f̂ , ĝ](ξ) =
∑

k∈Zn

f̂(ξ + k)ĝ(ξ + k).

2.2 Lemma

The bracket operator (f, g) �→ [f̂ , ĝ] is bounded as a map from L2(Rn) ×
L2(Rn) into L1(Tn) and is hermitian, L∞(Rn)-sesquilinear, and positive
semi-definite. Specifically,

1. For all f, g ∈ L2(Rn), [f̂ , ĝ] = [ĝ, f̂ ] is in L1(Tn) with

|| [f̂ , ĝ] ||L1(Tn)≤|| f ||L2(Rn) || g ||L2(Rn)

2. (f, g) �→ [f̂ , ĝ] is R-bilinear with [mf̂, ĝ] = m[f̂ , ĝ] = [f̂ ,mĝ] for all f, g
and all m ∈ L∞(Tn).

3. [f̂ , f̂ ] ≥ 0 a.e with [f̂ , f̂ ](ξ) > 0 for ξ ∈ Ωf .

Proof. Elementary verifications.
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2.3 Lemma

For f, g ∈ L2(Rn) and k ∈ Zn, < Tkf, g > is the k-th Fourier coefficient∫
Tn [f̂ , ĝ](ξ)e−2πiξ·kdξ of the periodic function [f̂ , ĝ].

Proof. With ek(ξ) = e−2πiξ·k, the definition of the Fourier transform
along with unitarity of F yields < Tkf, g >=< e−kf̂ , ĝ >=< [f̂ , ĝ], ek >L2(Tn).

2.4 Proposition

Let V be a closed subspace of L2(Rn). Then

1. V is a SIS ⇔ V is an L∞(Tn)-module.

2. If V =< ϕ > is generated by ϕ 
= 0, then the orthogonal projection
from L2(Rn) onto V is given by f �→ [f̂ , ψ̂]ψ where ψ is the function
for which ψ̂ vanishes outside Ωϕ and

ψ̂(ξ) =
ϕ̂(ξ)

[ϕ̂, ϕ̂]1/2(ξ)

for ξ ∈ Ωϕ. Moreover, g ∈ V ⇔ g = m · ψ for some m ∈ L2(Tn).

Proof. Suppose V is a SIS. Since the operators Tk are unitary, the
orthogonal complement V ⊥ of V is also a SIS. By Lemma 2.3, V ⊥ consists
of all g ∈ L2(Rn) for which [f̂ , ĝ] = 0∀f ∈ V . It follows from Lemma 2.2(2)
that V is a L∞(Tn)-module. The converse is trivial since Tkf=e−k ·f . This
proves (1) and (2) follows easily from Lemma 2.2.

2.5 Consequences

• In dealing with shift invariant spaces, the module language and bracket
operation allow us to put aside the awkwardness of calculations with
countably many translation operators applied to a fixed function ϕ.
Instead, we can treat singly generated shift invariant spaces < ϕ > as
being “one-dimensional” over the ring L∞(Tn) and can think of the
bracket operator as being a ring-valued “inner product”. In particular,
replacement of ϕ with ψ in Proposition 2.4 is the analog of dividing
a non-zero vector by its length to obtain a unit vector in any inner
product space. Also the < ϕ >-component m · ψ of any function f
is given by m = [f̂ , ψ̂] in analogy with the usual orthogonal projec-
tion formula in an inner product space. Although, in view of Lemma
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2.3, there is a Fourier series interpretation of every formula involving
brackets, the Lemma 2.2 properties are all we need to do calculations
with shift invariant spaces and we therefore need not interrupt such
calculations with Fourier series arguments.

• All of the usual elementary constructions in inner product spaces can
be imitated in shift invariant spaces. Since the Hilbert space L2(Rn)
is separable, every closed subspace is countably generated over the
complex numbers and hence every shift invariant space V is countably
generated over the ring L∞(Tn). Given a set ϕ1, ϕ2, . . . of genera-
tors for V, we may as well assume that ϕi+1 /∈< ϕ1, ϕ2, . . . , ϕi > ∀i.
Then merely copying down the usual formulas for the Gram-Schmidt
process and replacing inner products with brackets gives us the or-
thogonal direct sum decomposition V =

⊕
i≥1 < ψi > with ψi ∈<

ϕ1, ϕ2, . . . , ϕi > ∀i and f �→ ∑
i≥1[f̂ , ψ̂i] · ψi is the orthogonal projec-

tion map from L2(Rn) onto V . We will call any system ψ1, ψ2, . . . with
this property a system of orthogonal generators (SONG) for V .

• The sole need for caution with proceeding with additional analogs of
inner product spaces is the fact that while all unit vectors have length
1, our “unit shift functions” ψ have [ψ̂, ψ̂] = χΩψ

. This means that two
SONGS for V need not have the same number of elements. Indeed,
whenever Ωϕ is the disjoint union of sets Ωi, i ≥ 1, we have < ϕ >=⊕

i≥1 < χΩi · ϕ >. Establishing some control over the support sets
of a SONG is therefore the crucial difference between shift invariant
spaces and inner product spaces. To do this, we first need a reasonable
notion of “dimension” for shift invariant spaces.

2.6 Corollary

Let V be any SIS. Then there is a measurable function dimV from Tn into
N∪{0,∞} such that for every SONG φi, 1 ≤ i ≤ N, for V , dimV =

∑N
i χΩi

almost everywhere.
Proof. Suppose ϕi, 1 ≤ i ≤ N, and ψj , 1 ≤ j ≤ M, are two SONGs for

V . Using Proposition 2.4 with = understood to mean = a.e.,

N∑
i=1

χΩϕi
=

N∑
i=1

[ϕ̂i, ϕ̂i] =
M∑

j=1

N∑
i=1

| [ϕ̂i, ψ̂j ] |2=
M∑

j=1

[ψ̂j , ψ̂j ] =
M∑

j=1

χΩψj
.

Corollary 2.6 follows.
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2.7 Definitions

For V a SIS, the fundamental support sets Ω1,Ω2, . . . of V are defined up
to sets of measure zero by Ωi = {ξ | dimV ≥ i}. The rank or dimension
of V is the cardinal number dV =|| dimV ||∞. [Some authors call dimV the
multiplicity function on V and then call dV the multiplicity of V ]

2.8 Theorem

(Adapted from deBoor, De Vore, Ron) For V a SIS, dV is the minimal
cardinality for generating sets for V . If ϕi, i ≥ 1, is any SONG for V for
which Ωϕi ⊃ Ωϕi+1∀i, then each Ωϕi is the ith fundamental support set for
V . Conversely, there is a “rearrangement” algorithm converting any SONG
for V to a SONG with this ordering property for its support sets.

2.9 Primary Decomposition Theorem

Let V be any SIS and D the set of positive values assumed by dimV with
positive measure. Thus, with Ψj the set of all ξ ∈ Tn for which dimV(ξ) = j,
the first fundamental support set for V is the disjoint union of the sets
Ψj , j ∈ D. Then V has the canonical decomposition V =

⊕
j∈D Vj where

∀j ∈ D, j is the rank of the shift invariant subspace Vj and each of the j
fundamental support sets for Vj coincides, modulo a null set, with Ψj . In
algebraic terminology, the submodules Vj are free of dimension j over the
ring L∞(Ψj) of essentially bounded periodic functions vanishing outside Ψj .

2.10 Remarks

1. The proofs of Theorems 2.8 and 2.9 are somewhat lengthy but not
intrinsically difficult since they rely exclusively on the easy properties
we have established in 2.2-2.6.

2. There is a close analog between Theorems 2.8-2.9 and the familiar
cyclic and generalized eigenspace decomposition theorems for an o-
perator on a finite dimensional vector space. The analogy arises by
contrasting principal ideals generated by characteristic functions in the
ring L∞(Tn) with ideals in the ring of polynomials in one variable. In
essence, the same kinds of algebraic arguments which underline the
theory of modules over a principal ideal domain carry over with only
small changes to shift invariant spaces even though L∞(Tn) is not a
principal ideal domain.
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3. The shift invariant space L2(Rn) is free of rank ∞ over L∞(Tn. The
simplest choice of a SONG with the support ordering property consists
of the inverse Fourier transforms of the characteristic functions of unit
cubes with vertices in Zn. One can then easily construct shift invariant
spaces satisfying Theorem 2.9 for any preassigned set D of positive
integers and any choice of disjoint subsets Ψj , j ∈ D of Tn–indeed, all
one has to do is to select for each j ∈ D a collection of j unit cubes
with vertices in Zn, intersect each such cube with Ψj , and take as a
SONG the inverse Fourier transforms of the associated characteristic
functions. At least in principal, one can proceed to describe via change
of basis matrices all of the shift invariant spaces sharing the same set of
dimension values and the same support sets. We will leave the details
of this to the reader.

3 DYADIC SHIFT INVARIANT SPACES

3.1 Notation

Throughout this section we will denote by D the dyadic dilation operator
Df(x) = 2n/2f(2x) on L2(Rn).

3.2 Definition

A shift invariant space is dyadic if V ⊂ D(V ) or, equivalently, D−1V ⊂ V .

3.3 Remarks

1. If V is a SIS, then D(V ) is a SIS in view of the commutation identity
TkD = DT2k valid for all k.

2. For any ψ ∈ L2(Rn), the closure V+ of the span of {DjTkψ = ψj,k |
j ∈ Z, k ∈ Zn} is a SIS with DV+ ⊂ V+. Therefore the orthogonal
complement V− of V+ is a dyadic SIS.

3. For ψ as above, the SIS Vψ generated by {ψj,0 | j ≤ 0} is dyadic with

Vψ + < ψ >⊂ D(Vψ).

When {ψj,k} is a dyadic TFW which is semi-orthogonal in the sense
that ψj,k ⊥ ψj′,k′ whenever j 
= j′, it follow that the closure of the
subspace spanned by {ψj,k | j < 0, k ∈ Zn} coincides with both Vψ

and V−.
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3.4 Basic Questions Concerning Dyadic TFWs

• Question 1. Can we use the general theory of shift invariant spaces
to construct all finitely generated dyadic SISs? Which of these spaces
has the additional property that

L2(Rn) =
∑
j∈Z

DjV ?

• Question 2. Which dyadic SISs admit a function ψ for which D(V ) =
V ⊕ < ψ >? What else must be true in order that ψ generates a dyadic
TFW with V =Vψ?

• Question 3. Given any finitely generated SIS V =< ϕ1, ϕ2, . . . , ϕN >
what is the relationship between the rank and fundamental support
sets for V and D(V )?

• Question 4. Is there a concrete way to “renormalize” any dyadic SIS
into one which is semi-orthogonal?

A team consisting of Eugenio Hernández, Hrvoje Šikić, Fernando Soria,
Guido Weiss, and the author have made considerable progress in answering
Questions 1-4 and related questions in the case n = 1. This gives reason
to hope that a reasonably complete theory of dyadic TFWs may be within
reach. At least partial generalizations to arbitrary n for expanding integral
dilation matrices can be anticipated.

3.5 Theorem(W)

For Ω ⊂ Tn, there exists a measurable subset S ⊂ Rn for which Ω = {ξ+k |
ξ ∈ S, k ∈ Zn} and 1

2S ⊂ S ⇔ there exists ϕ for which < ϕ > is a dyadic
SIS with Ωϕ = Ω.

Proof. The proof of the implication ⇐ is very easy. Suppose < ϕ >
is a dyadic SIS. It follows from D−1ϕ ∈< ϕ > that there exists a periodic
function m for which ϕ̂(ξ) = m(ξ/2)ϕ̂(ξ/2) a.e. Then the set S of all ξ for
which ϕ̂(ξ) 
= 0 satisfies 1

2S ⊂ S and Ωφ = {ξ + k | ξ ∈ S, k ∈ Zn}. The
proof of the converse involves a series of technical adjustments to convert
a given set S with the indicated properties to a new set S′ with the same
properties and on which we can build an appropriate function ϕ̂.
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3.6 Theorem(W)

Suppose n = 1 and V =< ϕ >⊂ L2(R) with Ω = Ωϕ. Define

Ω1 = 2Ω ∪ (2Ω + 1),

Ω2 = 2Ω ∩ (2Ω + 1),

ϕ̂1 =
D̂ϕ

[D̂ϕ, D̂ϕ]1/2
, and

ϕ̂2 = χΩ2e1/2D̂ϕ.

Then

1. D(V )) =< D(ϕ) >⇔ Ω2 is a null set.

2. When Ω2 has positive measure, Ω1 and Ω2 are the fundamental support
sets for D(V ) and {ϕ1, ϕ2} is a SONG for D(V ).

The proof is a reasonably straightforward calculation. There is a some-
what cumbersome generalization to L2(Rn).

3.7 Corollary

For any finitely generated SIS V ⊂ L2(Rn), dV ≤ dD(V ) ≤ 2dV and dD(V )

is completely determined by intersection relations among the fundamental
support sets for V and their translations by 1/2. This leads to recipes for
constructing examples of dyadic SISs with dD(V ) = dV + 1.
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