The classical Brunn-Minkowski theorem is an inequality for volumes of convex bodies. It says that if A and B are convex bodies in \mathbb{R}^n then their Minkowski sum

$$A + B := \{a + b; a \in A, b \in B\}$$

satisfies the inequality

$$\text{Vol}(A + B)^{1/n} \geq \text{Vol}(A)^{1/n} + \text{Vol}(B)^{1/n}.$$

It has many applications and is particularly powerful since in some ways it goes in the opposite direction to simpler convexity statements like Hölder's inequality.

Its complex counterpart is a similar statement for L^2-norms of holomorphic functions (or forms, or sections of line bundles) on domains in \mathbb{C}^n or complex manifolds. The complex version contains the real version as a special case, but is considerably more general. I will explain how this works and, time permitting, also indicate a few applications in algebraic and Kähler geometry.